Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models
نویسندگان
چکیده
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as well as simulation smoothing where the latent volatilities are sampled at once. Based on this EIS simulation smoother a Bayesian Markov Chain Monte Carlo (MCMC) posterior analysis of the parameters of SV models can be performed. JEL classification: C15, C22, C52
منابع مشابه
Automated Likelihood Based Inference for Stochastic Volatility Models∗
In this paper the Laplace approximation is used to perform classical and Bayesian analyses of univariate and multivariate stochastic volatility (SV) models. We show that implementation of the Laplace approximation is greatly simplified by the use of a numerical technique known as automatic differentiation (AD). Several algorithms are proposed and compared with some existing methods using both s...
متن کاملSimple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models
In this paper we consider a variety of procedures for numerical statistical inference in the family of univariate and multivariate stable distributions. In connection with univariate distributions (i) we provide approximations by finite location-scale mixtures and (ii) versions of approximate Bayesian computation (ABC) using the characteristic function and the asymptotic form of the likelihood ...
متن کاملChapter on Bayesian Inference for Stochastic Volatility Modeling
This chapter reviews the major contributions over the last two decades to the literature on the Bayesian analysis of stochastic volatility (SV) models (univariate and multivariate). Bayesian inference is performed by tailoring Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) schemes that take into account the specific modeling characteristics. The popular univariate stochastic vo...
متن کاملBayesian analysis of multivariate stochastic volatility with skew distribution
Multivariate stochastic volatility models with skew distributions are proposed. Exploiting Cholesky stochastic volatility modeling, univariate stochastic volatility processes with leverage effect and generalized hyperbolic skew t-distributions are embedded to multivariate analysis with time-varying correlations. Bayesian prior works allow this approach to provide parsimonious skew structure and...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کامل